The Ball Research Group

If you prefer, you can also see Zach's CV.

Publication List for Zachary Ball

  1. A hexa-rhodium metallopeptide catalyst for site-specific functionalization of rhodium antibodies
    Ohata, J., Ball, Z.T. JACS, 2017, ASAP,


  2. Programming Post-TranslationalControl over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid
    Thomas, E.; Pandey, N.; Knudsen, S.; Ball, Z.T.; Silberg, J. ACS Synth. Biol. , 2017, ASAP.


  3. Ascorbate as a pro-oxidant: mild N-terminal modification with vinylboronic acid
    Ohata, J., Ball, Z.T. Chem. Commun., 2016, 53, 1622–1625.


  4. Designing selectivity in dirhodium metallopeptide catalysts for protein modification
    Martin, S.C.; Vohidov, F.; Wang, H.; Knudsen, S.; Marzec, A.A.; Ball, Z.T. Bioconj. Chem., 2016, 28, 659–665.


  5. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.
    Martin, S.C., Minus, M.B.; Ball, Z.T. In Methods in Enzymology, Vol. 580. Pecoraro, V., Ed.; Academic Press: 2016; 1-19.


  6. Assessing the intracellular fate of rhodium(II) complexes.
    Minus, M.B., Kang, M.K., Knudsen, S.E.; Liu, W., Krueger, M.J.; Redell, M.S.; Ball, Z.T. Chem. Commun., 2016, 52, 11685–11688.


  7. Histidine-directed arylation/alkenylation of backbone N-H bonds mediated by copper(II).
    Ohata, J.; Minus, M.B.; Abernathy, M.E.; Ball, Z.T. J. Am. Chem. Soc., 2016, 138, 7472-7475.


  8. Rhodium(II) proximity-labeling identifies a novel target site on STAT3 for inhibitors with potent anti-leukemia activity.
    Minus, M.B.; Liu, W.; Vohidov, F.; Kasembeli, M.M.; Long, X.; Krueger, M.; Stevens, A.; Kolosov, M.I.; Tweardy, D.J.; Redell, M.S.; Ball, Z.T. Angew. Chem. Int. Ed., 2015, 54, 13085-13089.


  9. Designing enzyme-like catalysts: A rhodium(II) metallopeptide case study.
    Vohidov, F.; Popp, B.V.; Ball, Z.T. In Proceedings of the 24th American Peptide Symposium. Orlando, June 20-25, 2015; Srivastava, V., Yudin, A., Lebl, M., Eds.; American Peptide Society: 2015; 24-26.


  10. Convenient analysis of protein modification by chemical blotting with fluorogenic "click" reagents.
    Ohata, J.; Vohidov, F.; Ball, Z.T. Mol. Biosyst., 2015, 11, 2846-2849.


  11. Luminogenic iridium azide complexes.
    Ohata, J.; Vohidov, F.; Aliyan, A.; Huang, K.; Marti, A.A.; Ball, Z.T. Chem. Commun., 2015, 51, 15192-15195.


  12. Potent and selective inhibition of SH3 domains with dirhodium metalloinhibitors.
    Vohidov, F.; Knudsen, S.E.; Leonard, P.G.; Ohata, J.; Wheadon, M.J.; Popp, B.V.; Ladbury, J.E.; Ball, Z.T. Chem. Sci., 2015, 6, 4778-4783.


  13. Molecular recognition in protein modification with rhodium metallopeptides.
    Ball, Z.T. Curr. Opin. Chem. Biol., 2015, 25, 98-102.


  14. Metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains.
    Vohidov, F.; Coughlin, J. M.; Ball, Z.T. Angew. Chem. Intl. Ed., 2015, 54, 4587-4591.


  15. Inhibiting prolyl isomerase activity by hybrid organic-inorganic molecules containing rhodium(II) fragments.
    Coughlin, J. M.; Kundu, R.; Cooper J.C.; Ball, Z.T. Bioorg. Med. Chem. Lett., 2014, 24, 5203-5206.


  16. Stabilization and functionalization of single-walled carbon nanotubes with polyvinylpyrrolidone copolymers for applications in aqueous media.
    Popp, B. V.; Miles, D. H.; Smith, J. A.; Fong, I. M.; Pasquali, M.; Ball, Z. T. J. Polym. Sci. Part A Polym. Chem., 2014, 53, 337-343.


  17. Mixed Bioengineering-Chemical Synthesis Approach for the Efficient Preparation of Δ7-Dafachronic Acid.
    Kinzurik, M.I.; Hristov, L.V.; Matsuda, S.P.T.; Ball, Z.T. Org. Lett., 2014, 16, 2188-2191.


  18. A tripodal peptide ligand for asymmetric Rh(II) catalysis highlights unique features of on-bead catalyst development.
    Sambasivan, R.; Zheng, W.; Burya, S.J.; Popp, B.V.; Turro, C.; Clementi, C.; Ball, Z.T. Chem. Sci., 2014, 5, 1401-1407.


  19. Studies of asymmetric styrene cyclopropanation with a rhodium(II) metallopeptide catalyst developed with a high-throughput screen.
    Sambasivan, R.; Ball, Z.T. Chirality, 2013, 25, 493-497.


  20. A rhodium-catalyzed method for serum-stable cysteine modification.
    Kundu, R.; Ball, Z.T. ChemComm, 2013, 49, 4166-4168.


  21. Designing enzyme-like catalysis with rhodium (II) metallopeptides.
    Ball, Z.T. Accts. Chem. Res., 2013, 46, 560-570.


  22. Determination of orientational isomerism in rhodium(II) metallopeptides by pyrene fluorescence.
    Sambasivan, R.; Ball, Z.T. Org. Biomol. Chem., 2012, 10, 8203-8206.


  23. Screening rhodium metallopeptide libraries on bead: asymmetric cyclopropanation and a solution to the enantiomer problem.
    Sambasivan, R.; Ball, Z.T. Angew. Chem., Int. Ed., 2012, 51, 8568-–8572.


  24. Sequence-Specific Inhibition of a Designed Metallopeptide Catalyst.
    Popp, P.V.; Chen, Z.; Ball, Z. ChemComm , 2012, 48, 7492-7494.


  25. Hybrid Organic-–Inorganic Inhibitors of a PDZ Interaction that Regulates the Endocytic Fate of CFTR.
    Kundu, R.; Cushing, P.R.; Popp, B.V.; Zhao, Y; Madden, D.R.; Ball, Z.T. Angew. Chem., Int. Ed., 2012, 51, 7217–7220.


  26. Catalytic protein modification with dirhodium metallopeptides: specificity in designed and natural systems.
    Chen, Z.; Vohidov, F.; Coughlin, J.M.; Stagg, L.J.; Arold, S.T.; Ladbury, J.E.; Ball, Z.T. J. Am. Chem. Soc., 2012, 134, 10138-10145


  27. Organometallics Roundtable 2011.
    Gladysz, J.A.; Ball, Z.T.; Bertrand, G, Blum, S.A.; Dong, V.M.; Dorta, R; Hahn, F.E. Humphrey, M.G.; Jones, W.D.; Klosin, J.; Manners, I.; Marks, T.J.; Mayer, J.M.; Rieger, B. Ritter, J.C.; Sattelberger, A.P.; Schomaker, J.M.; and Yam V.W. Organometallics, 2012, 1-18
  28. A general synthesis of dirhodium metallopeptides as MDM2 ligands.
    Zaykov, A.N.; Ball, Z.T. Chem. Commun., 2011, 47, 10927-10929.

  29. Site-specific protein modification with a dirhodium metallopeptide catalyst.
    Chen, Z.; Popp, B. V.; Bovet, C. L.; Ball, Z. T. ACS Chem. Biol., 2011, 6 (9), 920-–925.

  30. Kinetic and stereoselectivity effects of phosphite ligands in dirhodium catalysis.
    Zaykov, A.N.; Ball, Z.T. Tetrahedron, 2011, 67, 4397–4401. Tetrahedron Young Investigator Award 2011: F. Dean Toste.

  31. Proximity-Driven Metallopeptide Catalysis: Remarkable Side-Chain Scope Enables Modification of the Fos bZip Domain.
    Popp, B.V.; Ball, Z.T. Chem. Sci., 2011, 2, 690–695.

  32. Metallopeptides for Asymmetric Dirhodium Catalysis.
    Sambasivan, R.; Ball, Z.T. J. Am. Chem. Soc., 2010, 132, 9289–9291.

  33. Copper-Catalyzed Remote sp3 C–H Chlorination of Alkyl Hydroperoxides.
    Kundu, R.; Ball, Z.T. Org. Lett., 2010, 12, 2460–2463.

  34. Structure-Selective Modification of Aromatic Side Chains with Dirhodium Metallopeptide Catalysts.
    Popp, B.V.; Ball, Z.T. J. Am. Chem. Soc., 2010, 132, 6660–6662.

  35. Helix Induction by Dirhodium: Access to Biocompatible Metallopeptides with Defined Secondary Structure.
    Zaykov, A.N.; Popp, B.V.; Ball, Z.T. Chem.—Eur. J., 2010, 16, 6651–6659.

  36. Allylcopper Intermediates with N-Heterocyclic Carbene Ligands: Synthesis, Structure, and Catalysis. Russo, V.; Herron, J.R.; Ball, Z.T. Org. Lett., 2010, 12, 220–223.

  37. Controlling Peptide Structure with Coordination Chemistry: Robust and Reversible Peptide-Dirhodium Ligation. Zaykov, A.N.; MacKenzie, K.R.; Ball, Z.T. Chem. Eur. J.2009, 15, 8961–8965.

  38. Asymmetric Total Synthesis of Soraphen A: A Flexible Alkyne Strategy. Trost, B.M.; Sieber, J.D.; Qian, W.; Dhawan, R.; Ball, Z.T. Angew. Chem., Int. Ed., 2009, 48, 5478–5481.
  39. Catalytic Organocopper Chemistry from Organosiloxane Reagents. Herron, J.R.; Russo, V.; Valente, E.J.; Ball, Z.T. Chem.—Eur. J.. 2009, 15, 8713–8716.

  40. Synthesis and isotopic labeling of a naturally occurring alkyl-thiadiamondoid. Russo, V.; Allen, J.; Ball, Z.T. Chem. Commun. 2009, 30, 595–596.

  41. Synthesis and Reactivity of Functionalized Arylcopper Compounds by Transmetalation of Organosilanes. Herron, J.R.; Ball, Z.T. J. Am. Chem. Soc. 2008, 130, 16486–16487.

  42. Hydrosilylation of Alkynes and Related Reactions. Ball, Z.T. in Comprehensive Organometallic Chemistry, 3rd ed.; Mingos, M.; Crabtree, R., Eds. Elsevier Ltd.: London, 2007; Vol. 10, pp 789–814.
  43. Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of P3HT:PCBM Solar Cells. Sivula, K.; Ball, Z.T.; Watanabe, N.; Fréchet, J.M.J. Adv. Mater. 2006, 18, 206.
  44. Well-Defined, Living Polymers with High Fullerene Content and Their Use in Block Copolymers for Solution-Phase and Bulk Organization. Ball, Z.T.; Sivula, K.; Fréchet, J.M.J.Macromolecules 2006, 39, 70–72.
  45. Alkyne Hydrosilylation Catalyzed by a Cationic Ruthenium Complex: Efficient and General Trans Addition. Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc. 2005, 127, 17644–17655.
  46. Selective synthesis of functionalized, tertiary silanes by diastereoselective rearrangement-addition. Trost, B.M.; Ball, Z.T.; Kang, E.-J. Org. Lett. 2005, 7, 4911–4913.
  47. An Alkyne Hydrosilylation-Oxidation Strategy for the Selective Installation of Oxygen Functionality. Trost, B.M.; Ball, Z.T.; Laemmerhold, K. M. J. Am. Chem. Soc. 2005, 127, 10028–10038.
  48. Addition of metalloid hydrides to alkynes: Hydrometallation with boron, silicon, and tin. Trost, B.M.; Ball, Z.T. Synthesis 2005, 853–887.
  49. Synthetic Stitching with Silicon: Geminal Alkylation-Hydroxylation of Alkynyl Carbonyl Compounds. Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc. 2004, 126, 13942–13944.
  50. A Theoretical Study on the Mechanism, Regiochemistry, and Stereochemistry of Hydrosilylation Catalyzed by Cationic Ruthenium Complexes. Chung, L. W.; Wu, Y.-D.; Trost, B.M.; Ball, Z. T. J. Am. Chem. Soc. 2003, 125, 11578–11582.
  51. Regioselective Hydrosilylation of Propargylic Alcohols: An Aldol Surrogate. Trost, B. M.; Ball, Z. T.; Jöge, T. Angew. Chem., Int. Ed. 2003, 42, 3415–3418.
  52. Ruthenium-catalyzed vinylsilane synthesis and cross-coupling as a selective approach to alkenes: Benzyldimethylsilyl as a robust vinylmetal functionality. Trost, B.M.; Machacek, M. R.; Ball, Z.T. Org. Lett. 2003, 5, 1895–1898.
  53. Intramolecular endo-dig hydrosilylation catalyzed by ruthenium: Evidence for a new mechanistic pathway. Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc. 2003, 125, 30–31.
  54. A Stereospecific Ruthenium-Catalyzed Allylic Alkylation. Trost, B.M.; Fraisse, P.L.; Ball, Z.T. Angew. Chem., Int. Ed. 2002, 41, 1059–1061.
  55. A Chemoselective Reduction of Alkynes to (E)-Alkenes. Trost, B.M.; Ball, Z.T.; Jöge, T. J. Am. Chem. Soc. 2002, 124, 7922–7923.
  56. Markovnikov Alkyne Hydrosilylation Catalyzed by Ruthenium Complexes. Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc. 2001, 123, 12726–12727.
  57. A synthetic library of cell-permeable molecules. Koide, K.; Finkelstein, J.M.; Ball, Z.; Verdine, G.L. J. Am. Chem. Soc. 2001, 123, 398–408.
  58. Design and Synthesis of Novel NK1/NK2 Dual Antagonists. Reichard, G.A.; Ball, Z.T.; Aslanian, R.; Anthes, J.C.; Shih, N.Y.; Piwinski, J.J. Bioorg. Med. Chem. Lett. 2000, 10, 2329–2332.


Rice Department of Chemistry Rice University